
Proximity labeling: spatially resolved proteomic
mapping for neurobiology
Shuo Han1,4, Jiefu Li2,4 and Alice Y Ting1,2,3

Available online at www.sciencedirect.com

ScienceDirect
Understanding signaling pathways in neuroscience requires

high-resolution maps of the underlying protein networks.

Proximity-dependent biotinylation with engineered enzymes, in

combination with mass spectrometry-based quantitative

proteomics, has emerged as a powerful method to dissect

molecular interactions and the localizations of endogenous

proteins. Recent applications to neuroscience have provided

insights into the composition of sub-synaptic structures,

including the synaptic cleft and inhibitory post-synaptic density.

Here we compare the different enzymes and small-molecule

probes for proximity labeling in the context of cultured neurons

and tissue, review existing studies, and provide technical

suggestions for the in vivo application of proximity labeling.
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Introduction
To study how spatially compartmentalized protein net-

works assemble into functionally integrated macromolec-

ular complexes, we and others have developed a class of

methods termed ‘proximity labeling’ (PL). PL uses engi-

neered enzymes to selectively and covalently tag neigh-

boring proteins with biotin in living cells [1��,2��]. The

biotinylated proteins can then be isolated after cell lysis

and characterized by mass spectrometry (Figure 1a). PL

has been applied to map novel components of cellular

organelles [3�,4–10] and to identify new protein-protein

interaction partners with high spatial specificity [11–13].

These studies have demonstrated that PL is a powerful

approach to dissect the interactions and localization pat-

terns of molecules with nanometer spatial resolution

[14,15].
www.sciencedirect.com 
Because of the complexity and heterogeneity of neurons

in both spatial and temporal dimensions, PL also has the

potential to benefit neuroscience research. For example,

there is tremendous interest in mapping the molecular

composition of synaptic subdomains (e.g. active zone,

post-synaptic density, cleft, synaptic vesicles) and under-

standing how these change during plasticity and in disease

[16]. At the level of the organism, PL could potentially be

used to map the proteomic signatures of different brain

regions, cell types, and synapse types [17]. For specific

proteins of interest, such as ion channels and receptors, PL

could yield novel interaction partners that play important

functional roles in regulation or signaling [18].

Yet there have been very few examples of PL applied to

neuroscience to date. In this review, we summarize the

few existing studies, analyze the technical challenges to

the broader application of PL to neuroscience, and envi-

sion future applications.

Enzymes used for proximity labeling
Proximity labeling methods can be divided into two cate-

gories based on the enzyme used to carry out the catalysis:

peroxidase-based PL and biotin ligase-based PL. Peroxi-

dase-based PL relies on expression of an engineered ascor-

bate peroxidase (APEX or APEX2) [19,20�] or horseradish

peroxidase (HRP) in the cells or tissues of interest. Alter-

natively, HRP can be targeted to specific cell surface

antigens via conjugation to an antibody [21,22]. To initiate

labeling, H2O2 is added for 1 minute to cells/tissues pre-

loaded with the substrate biotin-phenol (BP) [1��] (or its

variants, such as BxxP [23��], alkyne-phenol [1��], and

desthiobiotin phenol [24]). The peroxidase oxidizes BP

into a phenoxyl radical that reacts with nearby proteins at

electron-rich side chains (Figure 1b), a mechanism similar

to the commonly used tyramide signal amplification (TSA)

kit. As the phenoxyl radical has a half-life of less than 1 ms

[25], the labeling intensity dramatically falls off within

nanometers from the peroxidase active site, generating a

biotinylation contour map that is then read out by quanti-

tative proteomics to give a ranked protein list based on

proximity to the enzyme. For example, using APEX tar-

geted to the outer mitochondrial membrane (OMM), pro-

teins residing on the OMM could be readily distinguished

from immediately adjacent cytosolic proteins [20�].

The rapid kinetics of the peroxidase reaction (<1 minute

labeling time) can be harnessed to interrogate dynami-

cally evolving protein interaction networks. Two recent

studies used APEX fusions to G-protein coupled
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receptors (GPCRs) to map protein interaction partners at

various timepoints after ligand stimulation [26,27�].
Because HRP/APEX can also survive cell fixation and

oxidatively polymerize diaminobenzidine, these enzymes

can also be used to generate contrast in fixed cells for

electron microscopy (EM), enabling users to examine

peroxidase fusion constructs for proper subcellular locali-

zation before initiation of a proteomic study [19].

The major distinction between APEX and HRP is that

HRP is only active in the secretory pathway and extra-

cellular environment due to its need for disulfide bond

formation [19]. However, HRP is more active than

APEX2, which makes it a superior choice in the compart-

ments in which it is active [23��].

The enzyme BioID, which is an R118G mutant of Escher-
ichia coli biotin ligase (BirA), is used in biotin ligase-based

PL [2��]. BirA requires both biotin and ATP as substrates

to generate reactive biotinoyl-50-AMP (bioAMP), which it

then transfers onto specific lysine residues on bacterial

carboxylase proteins. The R118G mutation in BioID

reduces BirA’s affinity for bioAMP, resulting in release

of the reactive intermediate to promiscuously tag lysine

residues on proximal proteins [28] (Figure 1c). Although

the half-life of bioAMP is many minutes in water [29],

BioID has been shown to have a labeling radius of

�10 nm from mapping of the nuclear pore complex

[11], indicating that the half-life is likely to be much less

inside cells, perhaps due to the high density of intracel-

lular nucleophiles. A major limitation of BioID compared

to peroxidase-based PL is that, due to its slow kinetics,

BioID requires 18–24 hours of reaction time to obtain

sufficient labeled material for proteomics. The long label-

ing timescale makes BioID non-optimal for the study of

dynamic processes. In addition, BioID fusion constructs

may mistarget more than APEX fusion constructs, due to

its larger size (35 kDa compared to 28 kDa for APEX);

mistargeting has previously been observed for BirA

fusions [30]. Recently, a smaller version (27 kDa) of

BioID, BioID2, was reported [31�].

Applications of proximity labeling to
neuroscience
Recent studies have demonstrated the value of PL in

elucidating the molecular components of synaptic clefts

and the inhibitory postsynaptic density (iPSD). Despite

long-standing interest in defining the molecular
(Figure 1 Legend) Workflow and mechanism of proximity labeling. (a) An e

region of interest (e.g. the iPSD) and covalently tags proximal endogenous 

residing inside and outside the region of interest. Following cell lysis, biotiny

peptides on-bead, then analyzed by liquid chromatography and tandem MS

1 minute to cells preloaded with biotin-phenol (BP; red B = biotin) to initiate

tags proximal endogenous proteins at electron-rich side chains such as tyro

supplied free biotin is utilized together with endogenous ATP for 18–24 hou

released from the enzyme’s active site to react with lysine residues on prox

cross cellular membranes.

www.sciencedirect.com 
components that mediate information flow between com-

municating neurons, biochemical purification of many

synaptic subregions remains intractable.

Loh et al. used HRP peroxidase in living neurons to map

the proteomes of both the excitatory and inhibitory

synaptic clefts, which are impossible to purify biochemi-

cally, and identified the glycosylphosphatidylinositol

anchor protein Mdga2 as a potential specificity factor

influencing Neuroligin-20s recruitment of presynaptic

neurotransmitters at inhibitory synapses [23��]. To adapt

previous peroxidase labeling protocols used for cancer

cells to cultured neurons, a new lysis and enrichment

protocol was developed to disassemble the detergent-

insoluble and tightly crosslinked post-synaptic density

(PSD), by adding a high percentage SDS lysis step with

10 minutes of boiling. This removed cytosolic contami-

nants co-purifying with biotinylated cleft-exposed pro-

teins. Another methodological advance in this study was

the application of an intersectional labeling strategy,

using two independent peroxidase fusion constructs

(HRP-Lrrtm1 and HRP-Lrrtm2 for excitatory cleft, and

HRP-Nlgn2A and HRP-Slitrk3 for inhibitory cleft) tar-

geting the same cellular locale, in order to improve the

specificity of protein identifications. Finally, because

non-dividing cells such as neurons are not amenable to

SILAC (stable isotope labeling with amino acids in cell

culture) labeling, which requires cell division and/or high

protein turnover for metabolic incorporation of labels,

protein quantitation was instead achieved through

iTRAQ (isobaric tags for relative and absolute quantita-

tion) chemical labeling. TMT (tandem mass tags) chem-

ical labeling can also be used for quantitation in non-

dividing cells. A similar workflow was applied to map the

alpha-synuclein interactome in living neurons using

APEX [13].

The iPSD is the only subcellular structure that has been

investigated by PL in the brain of a living animal [32��].
The application of BioID in the living mouse brain

represents a major milestone for PL in neuroscience, as

probe delivery and labeling procedures significantly differ

from cell culture. To express BioID-fused proteins in
vivo, adeno-associated viruses encoding biotin ligase

fusion proteins were injected into the cortex and hippo-

campus of postnatal mice. The exact virus injection

times, biotin dosage and labeling times were carefully

optimized to achieve maximum number of synapses
ngineered enzyme (green) is genetically targeted to the subcellular

proteins with a biotin handle. The gray shapes are endogenous proteins

lated proteins are enriched with streptavidin beads, digested to

. (b) For peroxidase-based labeling using APEX, H2O2 is added for

 labeling. APEX oxidizes BP into a phenoxyl radical, which covalently

sine. (c) For biotin ligase-based labeling using BioID, exogenously

rs of labeling. BioID converts biotin to reactive bioAMP, which is

imal proteins. Both bioAMP and the biotin phenoxyl radical do not
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labeled. As biotin delivery into mouse brain is more

challenging than in cell culture, the authors opted for

intraperitoneal administration of biotin, which can pene-

trate various tissue types including the blood-brain barrier

[33]. The mice were then labeled for 7 days before

harvesting biotinylated material. Hence, temporal speci-

ficity for BioID in vivo is still lacking. Nevertheless, the

study identified and validated many previously unknown

components of the iPSD, including InSyn1 and InSyn2.

Knockout of InSyn1 led to decreased postsynaptic inhib-

itory sites, reduced the frequency of miniature inhibitory

currents, and increased excitability in the hippocampus,

highlighting the power of PL to reveal new neurobiology.

In vivo application of PL requires probe
delivery into tissue
Since implementation of PL requires delivery of both a

genetic component (DNA encoding the enzyme) and a

chemical component (the small-molecule substrates) to

cells, an important consideration when performing PL in
vivo is how to deliver the substrate molecules to the

relevant organs or tissue. For the iPSD study described

above [32��], biotin was delivered to the brain via intra-

peritoneal injection. Mammals do not synthesize their

own biotin, but it is an essential vitamin used for fatty acid

biosynthesis. Import of biotin at low concentrations

(<5 mM) into cells is mediated primarily by the Na+-

dependent multivitamin transporter (SMVT1), which is

ubiquitously expressed in various tissues including the

intestine, liver, brain, heart, lung and kidney. Passive

diffusion across membranes occurs when biotin concen-

tration exceeds 25 mM [34]. Taking advantage of these

entry routes, biotin for BioID can be supplied through

animal food in principle. However, this method of deliv-

ery may lead to substantial variation in labeling among

individual animals as the food intake behavior may vary.

The iPSD study used daily intraperitoneal injection to

supply exogenous biotin, providing a simple and efficient

way to control biotin dosage. Importantly, biotin is not

known to be toxic even at high doses; when administered

to people without biotin metabolism disorder at up to

5 mg/day for two years, adverse effects were not observed

[35].

Apart from this study, one other in vivo BioID example

has been reported. Here, the authors investigated c-MYC

interaction partners in a tumor xenograft model, where

tumor cells expressing BioID were injected into mice

[36]. Again, exogenous biotin was supplied via intraperi-

toneal injection.

In some cases, users may opt for peroxidase-based PL in
vivo, to better control the time window of labeling. In vivo
substrate delivery for APEX-based PL is more challeng-

ing than for BioID, but a few recent studies have suc-

ceeded [37–39]. In insects and worms, the tightly sealed

and hydrophobic cuticle acts as a protective outer layer
Current Opinion in Neurobiology 2018, 50:17–23 
and is highly impermeable to small molecules in the

environment. Two recent studies applying APEX prote-

omics to the intestine of living C. elegans [38,39] used

RNAi knockdown of a glycosyltransferase gene, bus-8, to

compromise cuticle integrity and enable the delivery of

BP and H2O2 to the worm interior. However, disrupting a

gene with known developmental functions is a concern

for both the proteomic experiment and data interpreta-

tion. An alternative strategy is to dissect the tissue of

interest from the intact animal body, as employed in an

APEX study in Drosophila muscle mitochondria [37].

Dissection and labeling in proper tissue culture media

maintains the tissue in a physiological environment for

the short duration of the H2O2 reaction, providing a

potentially generalizable strategy for in vivo labeling with

high temporal resolution. The downside of this approach

is that the dissection process may be labor-intensive and

difficult for certain tissue types.

Although H2O2 is used at a low concentration in the

APEX PL reaction (1 mM) and only for a short period

of time (<1 minute), H2O2 delivery could lead to unde-

sired cytotoxicity arising from oxidative stress signaling.

1 mM of H2O2 has been shown to induce apoptosis in

24 hours through activation of p53-related pro-oxidant

gene expression such as BAX, PIG3 and PUMA [40].

Sub-millimolar concentrations of H2O2 for just 15 min-

utes can cause significant aldehydic DNA lesions in HeLa

cells [41]. Therefore, restricting H2O2 labeling to low

concentrations and short time windows is crucial for

minimizing side effects. For tissues with minimal thick-

ness and size, such as whole worms or dissected Drosoph-
ila muscles, H2O2 can quickly penetrate and react

throughout the entire sample, just as it does in cell culture

[37–39]. In contrast, immersing the whole mouse brain in

H2O2 solution is less likely to be effective, because by the

time H2O2 penetrates the center of the tissue mass, too

much damage may have been caused to the cortex by

oxidation. Acute slice preparations in artificial cerebro-

spinal fluid, such as for slice electrophysiology, could be

considered for vertebrate brain samples to avoid long

incubation times in H2O2.

The challenge of high background in vivo
Another technical challenge to applying PL in vivo is that

tissue contains more substantial sources of background

than cultured cells. The background can come from two

sources: non-specific binding of material to streptavidin-

coated beads, and endogenous biotinylated proteins. The

former problem arises when the experimentalist is infect-

ing only a small fraction of the total cells in a tissue region

or organism, or when the proteome of interest is very

small and localized. Then the ratio of biotinylated

(desired) material to non-biotinylated (undesired) mate-

rial is very small, and it is difficult to implement a

successful enrichment. To overcome this, crude fraction-

ation of the sample before streptavidin enrichment may
www.sciencedirect.com
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help to increase the ratio of desired to undesired material.

For example, if conducting a PL experiment targeting a

sub-synaptic region, a crude synaptosome preparation

[42] before streptavidin enrichment could help remove

background proteins from unrelated regions. Dissecting

out organs of interest before homogenization and strep-

tavidin enrichment could also be beneficial.

The second source of background, endogenous biotiny-

lated proteins, also becomes a serious problem when

working with small fractions of transfected cells, or small

and localized proteomes. In the Drosophila brain, for

example, endogenous biotinylated proteins are highly

abundant, especially in glia cells [43]. These endogenous

biotinylated species can vastly exceed the BioID- or

APEX-biotinylated proteomes in mass, and compete

for binding to streptavidin beads. Again, fractionation

or dissection may help in these cases by removing back-

ground from unrelated regions. It would also be valuable

in the future to develop non-biotin-based strategies for

enrichment of tagged proteomes. In Rhee et al. [1��], for

instance, it was shown that APEX can label proteins with

alkyne-phenol instead of biotin-phenol. Alkyne can be

‘clicked’ to various azide reagents [44], potentially

enabling enrichment without the use of streptavidin

beads.

Tissue presents other sources of background as well. For

peroxidase-based PL, background can arise from the

activity of endogenous peroxidases. For example, in

the C. elegans intestine, it was found that endogenous

peroxidase activity is higher than that typically observed

in cultured cells [39]. Therefore, designing experiments

with both unlabeled and untransfected controls is essen-

tial for minimizing interference from non-specific bin-

ders, endogenous biotinylated proteins, and endogenous

peroxidase activity.

Another strategy to overcome background in tissue is to

increase the desired signal. For example, one could

extend the reaction time to label more material, as in

the iPSD in vivo study [32��] and in a C. elegans study that

used 2 minutes instead of the typical 1 minute for APEX

tagging [39]. For peroxidase-based PL in particular,

sometimes low signal results from high expression of

catalases, which quench H2O2, or from low availability

of the peroxidase co-factor heme, which can be improved

by heme supplementation [45].

Outlook for the application of proximity
labeling in neurobiology
In the last decade, proteomics in combination with bio-

chemical approaches (e.g. fractionation, immunoprecipi-

tation, and chemical crosslinking) has been instrumental

in characterizing the molecular components of many

neuronal structures, including entire synaptic terminals

[42], synaptic vesicles [46], the PSD [47] and the active
www.sciencedirect.com 
zone [48]. Advanced imaging approaches, such as array

tomography [49], have offered neuroscientists high-reso-

lution maps of molecular architecture in the brain. How-

ever, array tomography is limited to only �20 targets at

once, as well as antibody availability, while purification-

based proteomics suffers from high false-positive rates

due to contamination. For instance, intracellular contami-

nants such as mitochondrial and nuclear proteins account

for 20–40% of identifications in synaptosome preparations

[42]. Therefore, PL-based proteomic maps with high

spatial and temporal resolution would greatly comple-

ment these existing techniques.

Besides the subcellular regions already mapped with PL-

based proteomics, neurons harbor many other function-

ally specialized subcellular structures, such as the growth

cone for axon guidance [50] and the axon initial segment

for signal integration [51], as well as highly distinct

structures executing unique functions in certain cell

types. For example, electrophysiological and structural

evidence has indicated that stereocilia tips of hair cells,

which are the primary mechanical sensors for hearing in

mammalian ears, house the elusive mechano-to-electric

transduction machinery with unknown molecular identity

[52]. PL-based proteomic profiling provides an unprece-

dented opportunity to systematically map the protein

composition of these functionally specialized regions.

Notably, growing evidence suggests that glia are more

than supportive cells, but are extensively involved in

regulating the development and function of the nervous

system as well [53]. Proteomic mapping of the interface

between glia and neurons would further our understand-

ing of the molecular basis of glial-neuronal interaction,

such as the signal controlling myelination. Furthermore,

glial pathogenesis has been implicated in many neuro-

logical disorders such as Alzheimer’s [54,55]. In vivo PL-

based proteomics of different cellular compartments (e.g.

endosomes, lysosomes, mitochondria, cell surface) in

different types of glia (astrocytes, microglia, oligodendro-

cytes) under healthy and pathological conditions would

provide a means to gain molecular insights into the role of

glial cells in diseases.

Proteomic mapping of dynamic interactomes offers

another exciting avenue to advance our understanding

of key molecules in neurobiology. Although a huge col-

lection of molecules essential for neural development

[56–58] and signal transmission [59] has been identified

through genetic analysis, most are still ‘orphan’ genes, for

which we have limited knowledge of interaction partners

and function. Applying PL-based proteomics to these

molecules could capture both stable and transient part-

ners and yield a comprehensive interaction network.

Moreover, the high temporal resolution of peroxidase-

based PL would allow us to profile interaction dynamics

under different conditions, as demonstrated in the GPCR

pathways [26,27�]. As many of these molecules are linked
Current Opinion in Neurobiology 2018, 50:17–23
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with human diseases [60], systematically profiling their

interacting partners under disease conditions would not

only shed light on the pathological mechanisms but also

potentially identify novel disease-associated genes.
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