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SUMMARY

Bile acid (BA) biosynthesis is tightly controlled by in-
trahepatic negative feedback signaling elicited by BA
binding to farnesoid X receptor (FXR) and also by
enterohepatic communication involving ileal BA re-
absorption and FGF15/19 secretion. However, how
these pathways are coordinated is poorly under-
stood.We showhere that nonreceptor tyrosine phos-
phatase Shp2 is a critical player that couples and reg-
ulates the intrahepatic and enterohepatic signals for
repression of BA synthesis. Ablating Shp2 in hepato-
cytes suppressed signal relay from FGFR4, receptor
for FGF15/19, and attenuated BA activation of FXR
signaling, resulting in elevation of systemic BA levels
and chronic hepatobiliary disorders in mice. Acting
immediately downstreamof FGFR4, Shp2 associates
with FRS2a and promotes the receptor activation
and signal relay to several pathways. These results
elucidate a molecular mechanism for the control of
BA homeostasis by Shp2 through the orchestration
of multiple signals in hepatocytes.

INTRODUCTION

The biosynthesis of bile acids (BAs) in hepatocytes is a primary

pathway for cholesterol catabolism and removal of excess

cholesterol via fecal disposal (Chiang, 2002; de Aguiar Vallim

et al., 2013; Russell, 2003; Thomas et al., 2008). When secreted

into duodenum postprandially, BAs act as ‘‘physiological deter-

gent’’ to emulsify food lipids and facilitate their absorption by in-

testine. Recently, BAs are also viewed as signaling molecules in

several metabolic processes (Houten et al., 2006; Vallim and Ed-

wards, 2009).

Because of its toxicity in excess amounts, BA synthesis is

tightly controlled by a negative feedback mechanism. BAs bind
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farnesoid X receptor (FXR) in hepatocytes (Makishima et al.,

1999; Parks et al., 1999) and transactivate small heterodimer

partner (SHP) to repress the expression of Cyp7a1 that encodes

cholesterol 7a-hydroxylase, the rate-limiting enzyme for BA syn-

thesis (Lu et al., 2000). FXR knockout (KO) mice displayed

increased BA levels, higher plasma cholesterol, phospholipids,

and triglycerides and were more susceptible to cholesterol-

induced hepatic steatosis (Anakk et al., 2011; Sinal et al.,

2000). However, SHP deletion rendered only a mild increase of

the BA pool size in mice (Kerr et al., 2002), and SHP KO mice

were protected from liver damage induced by cholesterol and

BA diet (Wang et al., 2003). These observations suggest SHP-

independent pathways in the control of Cyp7a1 expression.

Consistently, FXR and SHP double-knockout (DKO) mice dis-

played early-onset cholestasis, more severe liver damage, and

higher BA synthesis than mice with loss of either gene alone

(Anakk et al., 2011).

Ileum is the major site for BA reabsorption in the intestine

(Baker and Searle, 1960; Buchwald and Gebhard, 1968; Thomas

et al., 2008). BA/FXR signaling induces intestinal production of

FGF15 (FGF19 in humans), which also inhibits Cyp7a1 expres-

sion in hepatocytes by activating FGFR4 signaling (Fon Tacer

et al., 2010; Inagaki et al., 2005). Selective FXR deletion or trans-

genic expression of an activated FXR in the intestine abolished or

enhanced ileal FGF15 expression (Modica et al., 2012; Stroeve

et al., 2010). Recently, Diet1 was shown to be required for

FGF15/19 expression in enterocytes (Vergnes et al., 2013). Gut

microbiota, which metabolize primary BAs into secondary BAs,

also regulate intestinal FGF15 production in an FXR-dependent

manner (Sayin et al., 2013). Both FGF15 and FGFR4 KOmice ex-

hibited elevated BA levels and enhanced Cyp7a1 expression

(Inagaki et al., 2005; Yu et al., 2000). Further, FXR agonist feeding

failed to inhibit Cyp7a1 expression in FGFR4 or FGF15 KO mice

(Inagaki et al., 2005; Kong et al., 2012), suggesting that FGFR4

signaling is necessary for FXR-mediated repression of BA

biosynthesis. Experimental data also showed that SHP was

required for repression of Cyp7a1 by exogenous FGF15/19 (Ina-

gaki et al., 2005; Kir et al., 2012). SHP suppresses Cyp7a1

expression via interaction with hepatocyte nuclear factor 4a
.

mailto:gfeng@ucsd.edu
http://dx.doi.org/10.1016/j.cmet.2014.05.020
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cmet.2014.05.020&domain=pdf


A

B

C

D

E

F

Figure 1. Hepatobiliary Defects in

Shp2hep–/– Mice

(A) Macroscopic view of the whole livers from

2-month-oldWT (Alb-cre-:Shp2fl/fl) andShp2hep�/�

(Alb-cre+:Shp2fl/fl) mice.

(B) Gallbladder volumes were adjusted by liver

weight from WT and Shp2hep�/� mice (n = 6–7).

Data are shown as mean ± SEM. ***p < 0.001.

(C–F) Liver sections were stained with H&E

(C), Masson’s Trichrome (D), reticulin (E), and CK-

19 (F).

Scale bars in (D), (E) and (F) are the same as in (C).
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(HNF4a) and liver receptor homolog-1 (LRH-1) on Cyp7a1 pro-

moter (Kir et al., 2012), both of which are regulators of Cyp7a1

transcription (Inoue et al., 2006; Lu et al., 2000). Despite the

dependence on SHP for transcriptional suppression of Cyp7a1

by FGF19, no altered affinity to Cyp7a1 promoter was detected

for HNF4a, LRH-1, and SHP after FGF19 treatment (Kir et al.,

2012). How activated FGFR4 signaling impacts on BA biosyn-

thesis remains elusive.

Shp2 is a nonreceptor tyrosine phosphatase with two Src-

homology 2 domains that promotes signaling through the Ras-

Erk pathway (Chan and Feng, 2007; Neel et al., 2003). Mice

with Shp2/Ptpn11 ablated in hepatocytes (Shp2hep�/�) dis-

played impaired hepatocyte proliferation and liver regeneration

after partial hepatectomy (Bard-Chapeau et al., 2006).

Shp2hep�/� animals suffered chronic hepatic injury and inflam-

mation and were more susceptible to carcinogen-induced liver

tumorigenesis (Bard-Chapeau et al., 2011). Here, we show that

Shp2 loss in hepatocytes disrupts BA homeostasis and causes

hepatobiliary damage. Our results identify Shp2 as a crucial fac-

tor that orchestrates the FGF15/19-FGFR4 and BA-FXR

signaling pathways for control of BA biosynthesis.

RESULTS

Early-Onset Hepatobiliary Defects in Mice Deficient
for Shp2 in Hepatocytes
In previous experiments, we generated amouse line (Shp2hep�/�,
Albumin-Cre+:Shp2fl/fl) with Shp2 deleted in hepatocytes (Bard-

Chapeau et al., 2006, 2011). We observed hepatic necrosis, in-

flammatory infiltration, and periportal fibrosis, dented lobe
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edges, and significantly enlarged gall-

bladders in Shp2hep�/� mice at the age

of 2 months (Figures 1A–1D). These he-

patic disorders are similar to those in

rats fed with sodium cholate, a bile acid

detergent (Jeong et al., 2005), or mice af-

ter bile duct ligation (BDL; Figure S1,

available online) (Georgiev et al., 2008).

Liver sections from Shp2hep�/� mice dis-

played evident biliary fibrosis around por-

tal triad, with positive collagen staining

(blue) around bile duct (Figure 1D). Stron-

ger reticulin fiber staining (Figure 1E) also

indicates hepatic damage in Shp2hep�/�

mice. Around the portal triad, sporadic
ductal cell proliferation was consistently observed in Shp2hep�/�

livers, as revealed by cytokeratin-19 (CK-19) staining (Figure 1F).

Together, these results demonstrate that ablating Shp2 in hepa-

tocytes induces multiple hepatobiliary defects.

Shp2hep–/– Mice Are More Susceptible to BDL
The spontaneous hepatobiliary defects strongly suggest biliary

dysfunction in Shp2hep�/� mice. To this end, we performed a

BDL experiment, a well-characterized cholestasis model (Geor-

giev et al., 2008). Strikingly, almost all Shp2hep�/� mice (11/12)

died within 4 weeks after BDL, while 75% of wild-type (WT) ani-

mals survived the experiment (Figure 2A). Shp2hep�/� mice dis-

played larger gallbladders 24 and 48 hr after surgery (Figures

2B and 2C) and more severe jaundice, with darker yellowish co-

lor seen on the palms (Figure 2D). Consistently, higher serum bili-

rubin and BA levels were detected in Shp2hep�/� than inWTmice

at these time points (Figures 2D and 2E). However, Shp2hep�/�

mice also exhibited decreasing serum BA levels from 24 to

48 hr after BDL (Figure 2E), and BDL induced larger areas of

infarct in Shp2hep�/� mice as examined at 24 hr (Figure 2F).

The more extensive necrosis and deteriorating liver function

may explain the higher mortality and the drop in serum BA levels

in Shp2hep�/� mice. Thus, the Shp2hep�/� mice were more

vulnerable than WT controls to biliary obstruction, characterized

by higher mortality rate, more severe liver damage, and jaundice.

Shp2 Deficiency in Hepatocytes Led to an Increase
of Systemic BA Levels
We then measured BA levels in different ways. Consistent with

the literature (Rao et al., 2008), WT female mice exhibited BA
2, August 5, 2014 ª2014 Elsevier Inc. 321
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Figure 2. Severe Hepatobiliary Damages in Shp2hep–/– Mice following Bile Duct Ligation

(A) Kaplan-Meier survival analysis of WT and Shp2hep�/� mice after BDL. **p = 0.0014, as determined by log-rank (Mantel-Cox) test.

(B) Macroscopic views of WT and Shp2hep�/� livers were taken 24 and 48 hr after BDL.

(C) Gallbladder volumes were adjusted to liver weight after BDL (n = 4–10).

(D) Macroscopic view of palms was shown 24 and 48 hr after BDL. Serum bilirubin levels were measured (n = 6–12).

(E) Serum BA levels were measured after BDL (n = 6–12).

(F) Liver sections were stained with H&E (left), and statistical analysis (n = 5–7) of necrotic areas is shown to the right.

Data in (C), (D), (E), and (F) are shown as the mean ± SEM. **p < 0.01 and ***p < 0.001, as determined by Student’s t test.
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pool sizes larger than those of male mice (Figure 3A). The BA

pool size increased significantly in both male and female

Shp2hep�/� mice compared to controls (Figure 3A). Since an in-

crease in BA pool size could be due to obstruction of bile flow or

BA overproduction, we measured BA levels in serum, liver, gall-

bladder, and feces, as well as bile flow rate. Both hepatic and

serum BA levels were elevated in Shp2hep�/� mice compared

to controls (Figures 3B and 3F). Although the gallbladder BA con-

centrations were similar (Figure 3C), the total BA amounts in gall-

bladder were significantly elevated inShp2hep�/�mice due to the

larger size (Figures 1A and 1B). The bile flow rate in Shp2hep�/�

mice increased significantly (Figure 3D), ruling out intrahepatic

biliary obstruction. With similar weights of daily excretions of

feces (Figure S2A), the daily fecal BA excretion was significantly

higher in Shp2hep�/� than in control animals (Figure 3E). All of

these results indicate elevation of systemic BA levels in

Shp2hep�/� mice, which was evidently not caused by biliary

hindrance.

Since different BA species may act as either FXR agonists or

antagonists (Makishima et al., 1999; Parks et al., 1999; Sayin

et al., 2013), we analyzed BA compositions in BA pool, liver,

and feces. Shp2hep�/� mice exhibited a significant increase in

relative fold (Figures 3G–3I, left panels) or absolute amounts (Fig-

ure S2B) for almost all BA species. Themajority of BAs were con-
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jugated in BA pool and liver (Figures 3G and 3H, middle and left

panels), while most fecal BAs were unconjugated (Figure 3I, mid-

dle and left panels). The general representation of each species

was similar in the BA pool and liver (Figures 3G and 3H, middle

and left panels). Notably, the amount of FXR antagonist species

tauro-b-muricholic acid (TbMCA) was unchanged in Shp2hep�/�

liver, with a decrease in its representation in BA pools and feces

(Figures 3G–3I). Further, the FXR agonist species, such as tauro-

chenodeoxycholic acid (TCDCA), taurodeoxycholic acid (TDCA),

taurolithocholic acid (TLCA), and taurocholic acid (TCA),

increased significantly in the liver, and TLCA and TDCA even

showed an increased representation in hepatic BA composition

(Figure 3H).

BA Sequestration Ameliorates Hepatobiliary Defects
in Shp2hep–/– Mice
Next, we asked whether the excess BAs are responsible for the

hepatobiliary defects in Shp2hep�/� mice. We fed the mice with

chow diet supplemented with 2% cholestyramine from weaning

to 2 months old. Cholestyramine is a BA sequestrant that binds

BAs to prevent its ileal reabsorption and to increase its fecal

discharge, and therefore it lowers BA pool size in mice (Huang

et al., 2006; Kong et al., 2012). The hepatobiliary defects

including enlarged gallbladder, and dented edges were greatly
.
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Figure 3. Elevation of Systemic BA Levels in Shp2hep–/– Mice

(A) BA pool (liver, gallbladder, and intestine) sizes were measured in both genders of the two genotypes (n = 6–10).

(B–E) BA levels in liver (B), gallbladder (C), feces (D), and serum (E) were measured (n = 5–11). All data were collected in males, hepatic BA concentration was

adjusted to every gram of liver weight, and fecal BA excretion was adjusted to 100 g body weight/day.

(F) Bile flow rate was adjusted to 100 g body weight/min (n = 3).

(G–I) BA composition in BA pool (n = 6–9) (G), liver (n = 6–7) (H), and feces (n = 6–9) (I) was analyzed by liquid chromatography-mass spectrometry. The fold

changes of BA species in Shp2hep�/� mice were calibrated to WT (the average value was designated as 1, left panels). The percentile representations of each

conjugated and unconjugated BA species are shown in two panels separately in the right.

Data in (A)–(I) are shown as the mean ± SEM. *p < 0.05, **p < 0.01, and ***p < 0.001, as determined by Student’s t test.
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improved in Shp2hep�/� mice treated with cholestyramine (Fig-

ure 4A). Trichrome staining showed a significant decrease of

portal fibrosis in Shp2hep�/� livers, down to the WT level (Figures
Cel
4B and 4E), with no obvious difference in reticulin staining (Fig-

ure 4C). Cholestyramine treatment reduced the liver/bodyweight

ratios inWT andShp2hep�/�mice (Figure 4D). Thus, these results
l Metabolism 20, 320–332, August 5, 2014 ª2014 Elsevier Inc. 323
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Figure 4. Lowering BA Levels in Shp2hep–/– Mice Alleviates Hepatobiliary Defects

(A) Macroscopic views of WT and Shp2hep�/� livers fed with chow without or with 2% cholestyramine from age of 3 weeks to 2 months.

(B) Liver sections were stained with Masson’s Trichrome.

(C) Liver sections were stained with reticulin.

(D) The ratios of liver/body weight were determined for each group (n = 5–8).

(E) Collagen areas (blue) were measured from images in (B) (n = 4–7).
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demonstrated that the hepatobiliary defects in Shp2hep�/� mice

are, at least in part, due to the excess BAs.

BA Biosynthesis Is Dramatically Increased in Shp2hep–/–

Liver
Without biliary obstruction, the augmented fecal BA excretion

indicated a higher hepatic BA synthesis rate. Indeed, quantita-

tive real-time PCR analysis revealed increased expression of

key genes involved in both classical and alternative BA synthetic

pathways (Chiang, 2002; de Aguiar Vallim et al., 2013), including

Cyp7a1, Cyp8b1, and Cyp27a1, in Shp2hep�/� livers (Figure 5A).

The increased Cyp8b1 expression also explained the elevated

TDCA levels in BA composition in Shp2hep�/� mice (Figures

3G–3I). Expression of the BA intoxication gene Cyp3a11 was

also increased in Shp2hep�/� livers (Figure 5A), likely due to

increased hepatic BA levels. Similar to mRNA expression,

elevated Cyp7a1 protein levels were detected in Shp2hep�/�

livers (Figures 5B, S3A, and S3B). To determine if the elevated

Cyp7a1 expression was caused by Shp2 ablation directly, we

used another mouse model, Mx1-Cre+:Shp2fl/fl (referred to as

Shp(H+K�/�) hereafter), in which Shp2 is acutely deleted in hepa-

tocytes and nonparenchymal cells in adult mice following injec-

tion of polyinosinic:polycytidylic acid, poly(I:C) (Zhu et al., 2011).

Consistently, acute removal of Shp2 also led to enhanced

Cyp7a1 expression significantly at bothmRNA and protein levels

(Figures 5C, 5D, and S3C). Therefore, the deregulated BA

biosynthesis is a direct effect of Shp2 loss in hepatocytes.

Consistent with previous reports (Huang et al., 2006; Kong

et al., 2012), we found that the expression of both Cyp7a1 and

Cyp8b1 markedly increased in WT mice after cholestyramine

treatment (Figure 5E). Notably, cholestyramine feeding did not

further increase Cyp7a1 expression in Shp2hep�/� livers, but it
324 Cell Metabolism 20, 320–332, August 5, 2014 ª2014 Elsevier Inc
had an enhancing effect on Cyp8b1 (Figure 5E). Immunoblot

analysis confirmed the quantitative real-time PCR result on

Cyp7a1 expression in WT and Shp2hep�/� livers (Figures 5F

and S3D). Cholestyramine treatment induced modest reduction

of SHP expression in WT and further decreased SHP expression

in Shp2hep�/� livers (Figure 5E).

The basal SHP expression was significantly downregulated in

Shp2hep�/� livers (Figures 5A and 5E). Given the elevated FXR

agonist BA species and unchanged antagonist TbMCA in

Shp2hep�/� livers, decreased SHP expression suggests defec-

tive FXR signaling. To address this, we first examined FXR pro-

tein expression and subcellular distribution. Cytoplasmic and

nuclear fractions were prepared, and immunoblotting showed

clean separation of the two fractions using HSP90 as the cyto-

plasmic marker and lamin B1 for nucleus (Figure 5G). Deletion

of Shp2 did not alter FXR protein level or its nuclear localization

(Figure 5G). Notably, Shp2 was almost exclusively located in the

cytoplasm (Figure 5G), and we failed to detect physical associa-

tion of Shp2 with FXR even with overexpressed tagged FXR by

coimmunoprecipitation (data not shown). By chromatin immuno-

precipitation (ChIP) assay, we found that binding of FXR to the

SHP promoter was unchanged in Shp2hep�/� livers (Figure 5H).

To further determine the FXR activation status, we fed bothWT

andShp2hep�/�mice with synthetic FXR agonist GW4064 by oral

gavage. Hepatic SHP expression was significantly induced in

WT mice, but no SHP induction was observed in Shp2hep�/�

mice (Figure S3E). However, GW4064 induced SHP expression

in the ileums of both WT and Shp2hep�/� mice, where Shp2

expression was intact (Figure S3E). This result strongly suggests

defective FXR activation in Shp2-deficient hepatocytes. We also

examined HNF4a and LRH-1, two nuclear receptors that bind

and activate Cyp7a1 promoter (Kir et al., 2012; Lu et al., 2000).
.
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Both mRNA and protein levels of HNF4a and LRH-1 remained

unchanged in Shp2hep�/� liver (Figures 5A and 5G). Similar bind-

ing of HNF4a and LRH-1 to Cyp7a1 promoter was detected by

ChIP in WT and Shp2hep�/� livers (Figures 5I and 5J).

To determine if the BA overproduction is fueled by excess

cholesterol in mutant mice, we measured cholesterol levels in

serum, liver, and gallbladder. Serum cholesterol was even lower

in Shp2hep�/� than in WT mice (Figure 5M), while the cholesterol

concentrations in liver (Figure 5N) and gallbladder (Figure 5O)

were similar. Notably, the expression of cholesterol synthesis-

related genes, such as HMGCR and ACAT2, was enhanced in

Shp2hep�/� livers (Figure 5P). Thus, aberrantly increased BA syn-

thesis in Shp2hep�/� livers lowered circulating cholesterol levels,

resulting in a compensatory increase of hepatic cholesterol

synthesis.

Shp2 Mediates Both FGF15/19 and BA Signals
to Suppress BA Synthesis
Given the elevated bile flow and enhanced fecal excretion of BAs

inShp2hep�/� animals (Figure 3), wemeasured ileal expression of

FGF15 and SHP, both of which are induced by ileal BA-FXR

signaling (Kong et al., 2012; Modica et al., 2012; Stroeve et al.,

2010). The mRNA levels of FGF15 and SHP were markedly

increased in the ileum of mutant mice (Figure 6A), in which

Shp2 expression was normal (Figure S4A). The failed repression

of BA synthesis in the mutant liver and the drastically elevated

ileal FGF15 expression suggests insensitivity of Shp2-deficient

hepatocytes to this gut hormone. To test this, we injected recom-

binant hFGF19 intraperitoneally (i.p.) and measured gene

expression 6 hr later. Exogenous hFGF19 exerted a strong inhi-

bition of Cyp7a1 and Cyp8b1 expression in WT controls (Figures

6B, 6C, and S4B). However, the response of Shp2hep�/� livers to

hFGF19 was significantly diminished (though not completely

blocked), as evaluated by Cyp7a1 mRNA and protein levels (Fig-

ures 6B, 6C, and S4B). Furthermore, hFGF19 failed to upregulate

SHP expression in Shp2hep�/� livers (Figure 6B).

To identify Shp2-modulated signaling events downstream of

FGFR4, receptor for FGF15/19, we prepared liver lysates

30 min after hFGF19 injection. hFGF19 potently stimulated

Erk1/2 phosphorylation in WT, but not in Shp2hep�/� livers (Fig-

ures 6D and S4C), and similarly, defective activation was also

observed for ribosomal S6 kinase (p90RSK) (Figure 6D). The

specific effect on Erk1/2 activation by hFGF19 was ascertained

by the similar p-p38 MAPK levels detected in both lysates (Fig-

ures 6D and S4C). In contrast, FGF19-induced p-Jnk signals

were higher in Shp2hep�/� liver (Figures 6D and S4C), consistent

with our previous observations (Bard-Chapeau et al., 2006; Shi

et al., 1998). Using an antibody that recognizes several protein

kinase C (PKC) family members, we detected hFGF19-induced

phosphorylation of PKCs in controls, which was attenuated in

Shp2hep�/� livers (Figures 6D and S4C). To rule out the effect

by the chronic liver damages in Shp2hep�/� mice, we injected

hFGF19 into Shp2(H+K)�/� mice and obtained similar results in

these mice (Figure S4D). All of these data suggest that Shp2

deletion suppressed hFGF19-stimulated Erk and PKC activation

in hepatocytes.

With the reduced response to FGF15/19 signal, the elevated

BA levels failed to activate FXR to upregulate SHP expression

in Shp2hep�/� livers, suggesting a role of Shp2 upstream of
Cel
FXR. To test this, we investigated if expression of a constitutively

active FXR can rescue Shp2 deficiency and therefore inhibit

Cyp7a1 expression. Adenoviruses expressing VP16-FXR, SHP,

or VP16 were injected into WT and Shp2hep�/� mice through

tail vein. Similarly, increased SHP expression was observed in

both WT and Shp2hep�/� livers after VP16-FXR injection (Fig-

ure 6E). Cyp7a1 mRNA and protein levels were decreased in

WT livers and were also downregulated to a lesser extent in

Shp2hep�/� livers (Figures 6E, 6F, and S4E). SHP overexpression

also suppressed Cyp7a1 expression inShp2hep�/� livers, though

not to the level of WT (Figures 6E, 6F, and S4E). These results

argue that FXR and SHP do not operate in a simple linear rela-

tionship and also suggest that Shp2 modulates signaling to

both independently. Although Cyp8b1 expression was signifi-

cantly elevated in Shp2hep�/� livers (Figures 5A and 6E), overex-

pression of VP16-FXR or SHP caused similar suppression of

Cyp8b1 in control andmutantmice (Figure 6E). Thus, the expres-

sion of Cyp7a1 and Cyp8b1 is likely controlled by common and

distinct pathways.

Shp2 Is Required for Hepatic FGFR4 Activation
by FGF15/19
As described above, Shp2 is required for hepatic response to

ileal FGF15/19 signal and also for intrahepatic FXR activation

by BAs. To gain a broad view on Shp2 function, we performed

microarray analysis of gene expression in 2-month-old

Shp2hep�/� and WT livers and compared the results with two

published data sets. Onewas on FGF15/19-treated livers (Potth-

off et al., 2011) that showed induction of Erk pathway and inhibi-

tion of BA synthesis. Another was on FXR/SHP DKO livers that

exhibited increased BA synthesis (Anakk et al., 2011). Overall,

opposite gene expression patterns were observed between

Shp2hep�/� and FGF15/19-treated livers (Figure S5A). Only one

group of upregulated genes is enriched between Shp2hep�/�

and FXR/SHP DKOmice (Figure S5A). Gene ontology (GO) anal-

ysis showed significant enrichment of BA metabolism-related

processes, such as steroid synthesis and primary BA biosyn-

thesis, in the group of upregulated genes in Shp2hep�/� livers,

which were downregulated in FGF15/19-treated livers (Fig-

ure S5B). Furthermore, GO analysis revealed a group of genes

that were upregulated in both Shp2hep�/� and FXR/SHP DKO

livers and also a set of genes that were oppositely regulated in

FGF15/19-treated and FXR/SHP DKO livers (Figure S5B). There-

fore, the large-scale data analysis suggests that Shp2 is a posi-

tive regulator of FGF15/19 signal and acts cooperatively with

FXR and SHP in hepatic control of BA synthesis.

We further dissected the effect of Shp2 deficiency on signaling

events proximal to FGFR4. Treatment of Hep3B cells with

hFGF19 induced robust tyrosine-phosphorylation of FGFR4

and its immediate target FRS2a (Figures 7A and 7B). Consistent

with a previous report (Zhou et al., 2009), FRS2a was also highly

phosphorylated at serine/threonine residues (Figure 7B).

hFGF19 stimulation induced physical association of FGFR4

with FRS2a (Figure 7A) and assembly of Shp2/FRS2a and

Shp2/Gab1 complexes (Figures 7C and 7D). shRNA-mediated

Shp2 knockdown (KD) decreased tyrosyl phosphorylation of

FGFR4 (Figure 7E) and reduced FRS2a phosphorylation on tyro-

sine and serine (Figure 7F), resulting in impaired Erk activation

(Figures 7E and 7F).
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Figure 5. BA Synthesis-Related Genes Are Significantly Upregulated in Shp2hep–/– Liver

(A) The expression of genes as indicated was determined by quantitative real-time PCR in 2-month-old WT or Shp2hep�/� livers (n = 4–5).

(B) Cyp7a1, Shp2, and b-actin protein levels were determined by immunoblotting of liver lysates from WT and Shp2hep�/� mice. Each lane represents each

mouse.

(C) Cyp7a1, Shp2, and b-actin protein levels were determined by immunoblotting liver lysates from control and Shp2(H+K)�/� mice. Each lane represents each

mouse.

(D) Relative expression ofShp2 andCyp7a1wasmeasured by quantitative real-time PCR in liver extracts ofWT andShp2(H+K)�/�mice following poly(I:C) injection

(n = 5).

(E) Hepatic expression of Cyp7a1, Cyp8b1, SHP, and FXR mRNAs was determined by quantitative real-time PCR in mice fed with chow without or with 2%

cholestyramine from 3 weeks to 2 months (n = 4–8).

(F) Cyp7a1, Shp2, and b-actin protein levels were determined by immunoblotting liver lysates as in (F). Each lane represents each mouse.

(G) Cytoplasmic (C) and nuclear (N) fractions were prepared from freshly isolated liver samples. FXR, HNF4a, LRH-1, Lamin B (nuclear marker), Shp2, and Hsp90

(cytoplasmic marker) protein levels were determined by immunoblot analysis. Each pair of C and N samples was prepared from the same mouse.

(legend continued on next page)
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Figure 6. Shp2hep–/– Mice Are Refractory to FGF15/19 Repression of BA Synthesis

(A) Relative expression of SHP and FGF15 mRNA was determined by quantitative real-time PCR in ileum samples (n = 5–7).

(B) Relative expression ofCyp7a1,Cyp8b1, and SHPmRNAs in liver samples was determined by quantitative real-time PCR. The animals (n = 5–10) were injected

with PBS or hFGF19 (1 mg/kg body weight) and fasted for 6 hr before sample collection.

(C) Cyp7a1 and Shp2 protein levels were determined by immunoblot analysis of liver lysates from mice as in (B). Each lane represents one mouse.

(D) Immunoblotting of liver lysates was performed with antibodies against pFRS2a(Y196), pErk, Erk1, p-p90RSK, p-PKC(pan) (bII Ser660), pJNK, JNK, p-p38,

p38, b-Klotho, and GAPDH. WT or Shp2hep�/� mice (2 months old) were fasted for 5.5 hr before i.p. injection of PBS or hFGF19 (1 mg/kg body weight). The

animals were sacrificed 30 min after injection.

(E) Relative expression of SHP,Cyp7a1, and Cyp8b1mRNAwas determined by quantitative real-time PCR in liver samples. The mice (n = 4–5) were injected with

2 3 109 virions of VP16, VP16-FXR, or SHP adenoviruses through tail vein, and liver samples were collected 5 days later.

(F) Cyp7a1, V5, Shp2, and GAPDH protein levels were determined by immunoblotting liver samples collected as in (E). Each lane represents one mouse.

Relative gene expression was normalized to b-actin, and fold change was calibrated to theWT group. Data are shown as the means ± SEM. *p < 0.05, **p < 0.01,

and ***p < 0.001 as determined by Student’s t test.
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Consistent with the observations in Hep3B cells, FRS2a was

not phosphorylated in Shp2hep�/� liver following hFGF19 injec-

tion, suggesting defective FGFR4 activation (Figure 6D). How-

ever, FGFR4 mRNA levels remained unchanged in mutant livers
(H) ChIP was performed with liver samples (n = 3) using FXR antibody. qPCR wa

region (con). Data are shown as fold enrichment.

(I and J) ChIP assaywas performedwith HNF4a (I) or LRH-1 (J) antibodies and diffe

shown as fold enrichment.

(K–M) Cholesterol (chol) levels of serum (K), liver (L), and gallbladder (M) were m

(N) Hepatic expression of HMGCR and ACAT2 mRNA was determined by quant

All PCR data were normalized against b-actin, and fold change was calibrated to

0.05, **p < 0.01, and ***p < 0.001 as determined by Student’s t test.

Cel
and were not affected by hFGF19 injection (Figure S5D). Treat-

ment with hFGF19 for 6 hr induced downregulation of FGFR4

in WT livers (Figures 7H and S5C), suggesting that activation of

FGFR4 is followed by endocytosis and degradation after ligand
s performed with the FXR binding region on SHP promoter (SHP) and coding

rent DNA sequences inCyp7a1 promoter and proximal regions (n = 4). Data are

easured. Hepatic cholesterol was adjusted to mg/liver weight (L).

itative real-time PCR (n = 4–5).

the WT group. Data (in A, D, E, and H–N) are shown as the means ± SEM. *p <
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Figure 7. Shp2 Is Required for FGF15/19-Stimulated FGFR4 Activation

(A–F) Serum-starved Hep3B cells were stimulated with 100 ng/ml hFGF19 as indicated. (A) Cell lysates were subjected to immunoprecipitation with anti-FGFR4

antibody and then immunoblotted with FRS2a, pY, or FGFR4 antibodies. (B) Immunoprecipitates of anti-FRS2a antibody were immunoblotted against pY, pS, or

FRS2a antibodies. (C) Immunoprecipitates of anti-FRS2a antibody were immunoblotted with FRS2a, Gab1, or Shp2 antibodies, and immunoblotting was also

performedwith total cell lysate (TCL) against pErk andGAPDH. (D) Immunoprecipitates byGab1were immunoblotted against Shp2 or Gab1 antibodies, and TCLs

were also immunoblotted with antibodies to pErk or GAPDH. In (E) and (F), the cells were treated with lentiviruses expressing either scrambled (sh-scr) or Shp2-

specific (sh-Shp2) shRNAs for 72 hr before starvation. (E) Immunoblotting was performed with anti-FGFR4 immunoprecipitates using antibodies to pY or FGFR4,

and TCL was also immunoblotted with antibodies as indicated. (F) Immunoblotting was performed for anti-FRS2a immunoprecipitates using pY, pS, or FRS2a

antibodies, and also with TCL using antibodies as indicated.

(G) The same samples as in Figure 6D were blotted with antibodies to FGFR4 and b-actin.

(H) The same samples as in Figure 6C were immunoblotted for FGFR4 and Shp2.

(I) A model shows how Shp2 orchestrates BA and FGF15/19 signaling in the control of BA biosynthesis.
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binding, similar to other FGFRs reported previously (Beenken

andMohammadi, 2009; Haugsten et al., 2008). Notably, this pro-

cess was attenuated in Shp2hep�/� livers, as evidenced by more

steady FGFR4 protein contents after hFGF19 treatment (Figures

7G, 7H, and S5C). These results indicate a requirement of Shp2

for FGF15/19 activation of FGFR4 and its downstream signaling

pathways in hepatocytes.

DISCUSSION

Tight control of BA homeostasis is essential, given the critical

roles of BAs in lipid digestion and cholesterol metabolism as

well as the toxic effect of excess BAs. Numerous data suggested
328 Cell Metabolism 20, 320–332, August 5, 2014 ª2014 Elsevier Inc
crosstalk of FGF15/19-FGFR4 and BA-FXR signaling events,

although the underlying mechanism is unclear. This report pre-

sents physiological and biochemical data proving that Shp2

acts to coordinate the signals elicited by FGF15/19 and BAs in

the liver (Figure 7I).

The Shp2hep�/� mice exhibited early-onset hepatobiliary de-

fects, including enlarged gallbladder, elevation of systemic BA

levels, and ductal cell proliferation (Figures 1 and 3). Further-

more, Shp2hep�/� animals were more susceptible to biliary

obstruction (Figure 2). BA sequestration by cholestyramine

improved the hepatobiliary phenotypes (Figure 4), suggesting

that excess BAs account for the liver damages. The increased

fecal BA discharge, together with elevated bile flow (Figures
.
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3D and 3E), directly points to unrestrained BA synthesis in

Shp2hep�/� mice. Indeed, several lines of evidence highlight an

indispensable role of Shp2 in repression of BA synthesis. First,

basal levels of Cyp7a1 mRNA and protein were markedly

increased in Shp2hep�/� livers (Figure 5). Second, increased in-

trahepatic BAs did not suppress BA synthesis in Shp2�/� hepa-

tocytes (Figures 5 and 6). Third, increased ileal FGF15 expres-

sion, and even i.p. injection of hFGF19, did not effectively

inhibit BA synthesis in mutant mice (Figures 6A–6D). These ob-

servations indicate that Shp2 is positively required for hepatic

response to both intrahepatic and ileal inhibitory signals.

It has been well recognized that the BA-FXR-SHP axis plays a

central role in repression of Cyp7a1 expression. However,

phenotypic analyses of FXR and SHP KO or DKO mice argued

against a simple linear relationship of the FXR-SHP-Cyp7a1

pathway (Anakk et al., 2011; Sinal et al., 2000). Our results indi-

cate defective FXR activation in Shp2hep�/� livers. First, the BA

composition analysis showed an increase of most FXR agonist

species with similar levels of antagonist in Shp2hep�/� livers (Fig-

ures 3G–3I). However, the basal SHP expression was reduced in

the mutant livers (Figure 5A). Second, synthetic FXR agonist

GW4064 failed to upregulate SHP expression in Shp2hep�/�

livers (Figure S3E). Third, exogenous expression of an activated

FXR or SHP partially repressed Cyp7a1 expression (Figure 6),

placing Shp2 upstream of FXR. However, with distinct subcellu-

lar localization (Figure 5G), Shp2 does not form a physical com-

plex with and regulate FXR activity directly.

The defective response to hFGF19 in Shp2hep�/� livers is very

similar to that of FGFR4 and FGF15 KOmice, indicating a critical

role of Shp2 in this pathway. With normal expression of Shp2 in

the ileum (Figure S4A), the intestinal BA-FXR signaling remained

intact in Shp2hep�/� animals. In fact, ileal FGF15 and SHP

expression was increased (Figure 6A) due to enhanced bile

flow. However, this datamay have also revealed a compensatory

mechanism for the insensitivity of Shp2�/� hepatocytes to

FGF15. Indeed, i.p. injection of hFGF19 suppressed Cyp7a1

and Cyp8b1 expression in WT livers, but this response was

diminished in Shp2hep�/� livers (Figure 6). Tyrosyl phosphoryla-

tion of FGFR4 and FRS2a was reduced in Shp2 KD cells

following hFGF19 stimulation (Figure 7E). The ligand-stimulated

FGFR4 activation/downregulation was also attenuated in

Shp2hep�/� livers (Figures 7G and 7H). These biochemical data

suggest a requirement for Shp2 in FGFR4 activation by

hFGF19, which involves its association with FRS2a.

Consistently, we detected multiple signaling defects down-

stream of FGFR4 in Shp2hep�/� livers and Shp2 KD cells.

hFGF19-stimulated p-Erk1/2 and p90RSK activation was almost

blocked in Shp2hep�/� livers (Figure 6D). Consistently, several

groups reported that pharmaceutical- or siRNA-mediated inhibi-

tion of Erk alleviated repression of Cyp7a1 expression in human

hepatocytes or mouse livers (Henkel et al., 2011; Li et al., 2012b;

Song et al., 2009). Therefore, defective Erk activation may

account for deregulated BA synthesis in Shp2�/� hepatocytes.

Several molecules have been proposed as potential Shp2 tar-

gets in promoting the Erk pathway, including PAG/Cbp, Ras-

GAP, Gab1, and Sprouty (Chan and Feng, 2007; Neel et al.,

2003). Previous data also suggested BA activation of PKCa,

PKSb, and PKCd (Gineste et al., 2008; Rao et al., 1997), and a

recent report showed PKCz activation by FGF19 (Seok et al.,
Cel
2013). These studies suggested amechanism for FXR regulation

via phosphorylation by PKCs, which can be stimulated by

FGF15/19. We observed that Shp2 deficiency resulted in

reduced PKC phosphorylation in control and hFGF19-treated

livers. Further studies are needed to elucidate distinct roles of

specific PKC isoforms in FGFR4 signaling and FXR activation.

Together, our results show that Shp2 is a critical player immedi-

ately downstream of FGFR4 to regulate BA synthesis. The

biochemical data were further supported by comparative anal-

ysis of global gene expression profiles in Shp2hep�/�, FXR/SHP
DKO and FGF15/19-treated livers (Figures S5A and S5B).

BAs are also considered as carcinogens due to their amphi-

pathic nature (Wang et al., 2013). Both FXR and SHP KO animals

developed liver cancers spontaneously (Yang et al., 2007; Zhang

et al., 2008). FXR/SHP DKOmice suffered from accelerated liver

tumorigenesis due to BA activation of Hippo signaling (Anakk

et al., 2013). Shp2hep�/� mice developed hepatocellular ade-

nomas spontaneously and were more susceptible to chemical

carcinogen (Bard-Chapeau et al., 2011; Li et al., 2012a).

Lowering BAs by cholestyramine significantly improved hepato-

biliary damages in mutant animals, suggesting that persistent

elevation of hepatic BA contents is a contributing factor to onco-

genesis in Shp2-deficient livers. Recent studies showed that

FGF19 and FGFR4 are deregulated in several human cancers

(Desnoyers et al., 2008; French et al., 2012). In Shp2hep�/�

mice, upregulated ileal FGF15 expression (Figure 6A) may

contribute to enhanced liver tumorigenesis.

BA biosynthesis is a primary route for disposal of excess

cholesterol, and the intricate balance between BAs and choles-

terol is exemplified by the cholesterol-lowering effect of BA

sequestration. Similar to Cyp7a1 transgenic mice (Li et al.,

2011), Shp2hep�/� animals also showed lower plasma choles-

terol levels and increased hepatic cholesterol synthesis (Figures

5M and 5P), indicating that the enhanced BA synthesis is not

driven by cholesterol accumulation but rather is due to uncon-

trolled expression of Cyp7a1 and other BA synthetic genes. All

this supports Shp2 as a bona fide regulator of BA biosynthesis.

EXPERIMENTAL PROCEDURES

Animal Procedures

Generation of hepatocyte-specific Shp2 KOmice (Shp2hep�/�) were described

previously (Bard-Chapeau et al., 2011; Bard-Chapeau et al., 2006). The animal

protocols (S09108) with all used procedureswere approved by the UCSD Insti-

tutional Animal Care and Use Committee. BDL was performed as previously

reported (Georgiev et al., 2008). For BA sequestration, mice were fed with

chow diet (Cat. No. 7012, Harlan Laboratories) supplemented with 2% chole-

styramine-resin (Cat. No. C4650, Sigma-Aldrich) fromweaning to 2months. All

experimental data were collected frommale animals at the age of 8–10 weeks,

except that BDL and measurement of BA pool size and bile flow were done on

both male and female mice. All samples were collected from WT and mutant

animals between 3:00 and 5:00 p.m. during the day.

Histology Staining and Image Acquisition

Liver samples were prepared as reported (Bard-Chapeau et al., 2011),

embedded, sectioned, and stained with hematoxylin and eosin (H&E) at a

UCSD core facility. Masson’s Trichrome Staining (Cat. No. KTMTRPT, Amer-

ican MasterTech) and reticulin staining (Cat. No. KTCPRPT, American Master-

Tech) were performed following the manufacturer’s instructions. Necrotic

areas were counted using ImageJ and normalized with parenchymal areas.

The images were acquired with an Olympus IX71 microscope and CellSense

Software.
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Quantitative Real-Time PCR and Immunoblot Analyses

Liver or ileum samples were lysed in TRIzol reagent (Cat. No. 15596, Invitro-

gen) using MagNA Lyser (Roche). RNA was extracted and reverse transcribed

with a kit (Cat. No. 4374966, Invitrogen). Quantitative real-time PCR was per-

formed with commercial master mix (Cat. No. 600882, Agilent Technologies)

using Mx3000P QPCR system (Agilent Technologies). A list of PCR primers

is provided in the Supplemental Information. Immunoblot analysis was per-

formed with standard protocols and visualized with ECL or ECL plus. Some

blots were visualized by LI-COR Odyssey system. The list of primary anti-

bodies is provided in the Supplemental Information. Freshly isolated liver

lysates were separated into cytoplasmic and nuclear fractions using a kit

(Pierce, Cat. No. 78835).

Measurement of BAs, Bilirubin, and Cholesterol

Bile flow rate was measured as described previously (Modica et al., 2011).

Levels of total bile acids (Cat. No. DZ042A-K, Diazyme), total bilirubin (Cat.

No. B577, Teco Diagnostics), and total cholesterol (Cat. No. 439-17501,

Wako Diagnostics) were measured according to the manufacturer’s instruc-

tions. BA composition in BA pool, liver, and feces was analyzed as previously

reported (Li et al., 2012b).

Cell Culture, Treatment, and Immunoprecipitation

Hep3B cells (ATCC HB-8064) were starved in Dulbecco’s modified Eagle’s

medium (DMEM) with 1% fetal bovine serum (FBS) for 16 hr and stimulated

with 100 ng/ml hFGF19 in DMEM for the indicated time periods. Immunopre-

cipitationwas performed as reported (Shi et al., 2000). Tyrosyl-phosphorylated

proteins were detectedwith three anti-pY antibodies combined (Supplemental

Information).

Adenovirus and Lentivirus Generation and Purification

PCR fragments of VP16, VP16-FXR, and SHP were cloned into pENTR/

D-TOPO and then shuttled into pAd/CMV/V5-DEST. VP16-FXR fragment

was amplified with VP16-ad-F and FXR-ad-R primers. The virus stocks were

generated according to the manufacturer’s instructions. The purification and

titration of viruses were performed as previously described (Qiao et al.,

2006). Lentivirus constructs with scrambled or Shp2-specific shRNAs were

generated as previously reported (Lu et al., 2011).

Microarray and Bioinformatic Data Analysis

Total RNA from Shp2hep�/� and WTmice liver was prepared with RNeasy Mini

Kit (QIAGEN Cat. No. 74104). Labeled cRNA was prepared from 500 ng RNA

using the Illumina RNA Amplification Kit from Ambion. The labeled cRNA

(750 ng) was hybridized overnight at 58�C to the Sentrix Mouse-8 Expression

BeadChip (>23,000 gene transcripts; Illumina) according to themanufacturer’s

instructions. BeadChips were subsequently washed and developed with fluo-

rolink streptavidin-Cy3 (GE Healthcare). BeadChips were scanned with an Illu-

mina BeadArray Reader.

The gene expression data (GSE20599) for FXR�/�/SHP�/� DKO mice at

5 weeks of age were downloaded from the GEO (Anakk et al., 2011), pro-

cessed with BeadStudio software, and quantile normalized. The data

(GSE29426) for FGF15/19-treated mice were downloaded from GEO (Potthoff

et al., 2011) and processed with MAS5 algorithm (Affymetrix). Probes were

filtered with detection p value > 0.01 (for Shp2hep�/� and FXR�/�/SHP�/�

DKO data) or with ABS call (for FGF15/19 data) before further analysis. Tran-

scripts shared between data sets were used for K-means clustering with Clus-

ter 3.0 software. Heatmaps were generated with Java TreeView. GO analysis

was performed with DAVID v.6.7 program.

Statistical Analyses

Data analysis was performed using a two-tailed unpaired Student’s t test.

Values are expressed as mean ± SEM (*p < 0.05; **p < 0.01; ***p < 0.001).
ACCESSION NUMBERS

The microarray data have been deposited in the Gene Expression Omnibus

(GEO) under the accession number GSE51860.
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